Network Card Bonding On CentOS

Bonding allows the aggregation combining the bandwidth into a single connection. For example, you can aggregate two 10Mbps ports into a 20Mbps trunk port. Which is equivalent with having one interface with 20Mbps speed.

Where should I use bonding?

You can use it wherever you need redundant links, fault tolerance or load balancing networks. It is the best way to have a high availability network segment. A very useful way to use bonding is to use it in connection with 802.1q VLAN support (your network equipment must have 802.1q protocol implemented).

Diverse modes of bonding:

mode=1 (active-backup)
Active-backup policy: Only one slave in the bond is active. A different slave becomes active if, and only if, the active slave fails. The bond’s MAC address is externally visible on only one port (network adapter) to avoid confusing the switch. This mode provides fault tolerance. The primary option affects the behavior of this mode.

mode=2 (balance-xor)
XOR policy: Transmit based on [(source MAC address XOR’d with destination MAC address) modulo slave count]. This selects the same slave for each destination MAC address. This mode provides load balancing and fault tolerance.

mode=3 (broadcast)
Broadcast policy: transmits everything on all slave interfaces. This mode provides fault tolerance.

mode=4 (802.3ad)
IEEE 802.3ad Dynamic link aggregation. Creates aggregation groups that share the same speed and duplex settings. Utilizes all slaves in the active aggregator according to the 802.3ad specification.

Prerequisites:

Ethtool support in the base drivers for retrieving the speed and duplex of each slave.

A switch that supports IEEE 802.3ad Dynamic link aggregation. Most switches will require some type of configuration to enable 802.3ad mode.

mode=5 (balance-tlb)
Adaptive transmit load balancing: channel bonding that does not require any special switch support. The outgoing traffic is distributed according to the current load (computed relative to the speed) on each slave. Incoming traffic is received by the current slave. If the receiving slave fails, another slave takes over the MAC address of the failed receiving slave.

Prerequisite: Ethtool support in the base drivers for retrieving the speed of each slave.

mode=6 (balance-alb)
Adaptive load balancing: includes balance-tlb plus receive load balancing (rlb) for IPV4 traffic, and does not require any special switch support. The receive load balancing is achieved by ARP negotiation. The bonding driver intercepts the ARP Replies sent by the local system on their way out and overwrites the source hardware address with the unique hardware address of one of the slaves in the bond such that different peers use different hardware addresses for the server.
Also you can use multiple bond interface but for that you must load the bonding module as many as you need.

Example:

In the /etc/modprobe.conf file add the following:

alias bond0 bonding

options bond0 miimon=80 mode=5

options bond0 miimon=80 mode=5

In the /etc/sysconfig/network-scripts/ directory create ifcfg-bond0:

DEVICE=bond0

IPADDR=<ip address>

NETMASK=

NETWORK=

BROADCAST=

GATEWAY=

ONBOOT=yes

BOOTPROTO=none

USERCTL=no

Change the ifcfg-eth0 to:

DEVICE=eth0

ONBOOT=yes

BOOTPROTO=none

USERCTL=no

MASTER=bond0

SLAVE=yes

Change the ifcfg-eth1 to:

DEVICE=eth1

ONBOOT=yes

BOOTPROTO=none

USERCTL=no

MASTER=bond0

SLAVE=yes

That’s it!

This information is not my own but something I sourced when attempting to bond the NIC’s on a Trend IWSVA appliance. If you know IWSVA then you know that it failed.

Advertisements

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s